
Numbering Schemes and How to Save
DB Roundtrips Using PostgreSQL

Holger Jakobs – holger@jakobs.com – http://plausibolo.de

2025-09-17

Inhaltsverzeichnis
1 Identifying Numbers 1

1.1 Sequences . 1
1.2 Universally Unique Identifiers . 3
1.3 Random Numbers . 4
1.4 Table With Potential Customer Numbers 4
1.5 Customer Table . 5
1.6 Extended INSERT Statement . 5
1.7 Implementation For Non-PostgreSQL Databases 6

2 Generating an Initial Password 7
2.1 Customer Table . 7
2.2 Function to Insert a New Customer . 7
2.3 Using the Function To Insert a New Customer 8

Sometimes new elements have to get identifying numbers to be used as primary keys, like
articles, customers or employees. There are several ways of finding numbers to assign –
each with its own advantages and disadvantages. In case of a new customer registrating,
the new number has to be told, and maybe some random number like a PIN as well. This
little article sheds some light on the possibilities PostgreSQL has to offer.

1 Identifying Numbers
1.1 Sequences
The easiest way to number articles, orders, customers, employees, invoices and the like
is using a sequence. In PostgreSQL, this is no longer being done by manually creating a
sequence and dealing explicitly with it or attaching the “next values” from the sequence as
a default value to the primary key column of the table, but by using the standard feature
of GENERATED ALWAYS AS IDENTITY, which PostgreSQL has implemented.

mailto:holger@jakobs.com
http://plausibolo.de

This guarantees unique numbers and allows for high concurrency, because there is no
waiting whether the number picked from the sequence will actually produce a new row in
the table. In case the INSERT statement fails after a number has been acquired from the
sequence (due to a CHECK constraint or the like), this number will never appear in the table.
The numbers of new items will thus be increasing, but not always without gaps.

The sequence pattern is robust and can be used with smallint, integer, or bigint

columns. If in doubt, use bigint, because it is very unlikely to overflow and run out of
numbers. The size of the identifier is 16, 32 or 64 bits.

An example can look like this:

CREATE TABLE article (

short_name varchar(50) NOT NULL UNIQUE,

description text,

retail_price numeric(12,2) NOT NULL CHECK (retail_price > 0),

art_no integer NOT NULL GENERATED ALWAYS AS IDENTITY (start with 10000)

);

psql describes this table as follows:

Table "public.article"

Column | Type | Collation | Nullable | Default

--------------+-----------------------+-----------+----------+------------------------------

short_name | character varying(50) | | not null |

description | text | | |

retail_price | numeric(12,2) | | not null |

art_no | integer | | not null | generated always as identity

Indexes:

"article_short_name_key" UNIQUE CONSTRAINT, btree (short_name)

Check constraints:

"article_retail_price_check" CHECK (retail_price > 0::numeric)

Simple numbers are fine, but they expose some information about time. A higher number
was generated later than a smaller one. Maybe of even more concern may be that valid
numbers can easily be guessed. If a customer numer 2322 is valid, there is a high probability
that 2321 and 2323 are valid as well. This can lead – and already has lead – to data breaches,
because half of the information (number, password) was easily guessable.

When a new record is inserted, data for all columns except art_no are provided. The last
columns will be filled from the sequence. If you need the new article number for further
processing, make use of the RETURNING clause of the INSERT statement.

INSERT INTO article VALUES ('pencil', 'Faber Castell pencil HB', 2.20) RETURNING art_no;

In case of Java’s JDBC, make sure you call this statement with executeQuery() and not
with executeUpdate(), so that you get a ResultSet with the art_no. In other languages,
similar procedures, functions or methods exist.

2

1.2 Universally Unique Identifiers
Another way of generating unique identifiers is using the standardised system of UUIDs1, of
which there are several variants. PostgreSQL 18 introduces UUIDv7, which are especially
suitable for the task we are trying to solve here. Variant UUIDv4, which exists in earlier
versions, can work as well. If you prefer other variants, have a look at the extension called
uuid-ossp.

In any case, the appropriate data type for UUIDs is – not surprisingly – called uuid.
It is to be preferred over saving a UUID in some text column because it checks the value
for validity and output is always nicely formatted with hyphens, while input formats may
vary to a certain extent.

The bad thing about UUIDs is their size: 128 bits, which is twice the size of the biggest in-
teger type. But there is no need for a sequence, and UUIDs can be generated independently
anywhere offline without any UUID ever appearing twice.

The most popular variants are UUIDv4, which is totally random, and UUIDv7, which
contains a millisecond-grained timestamp, so that the values can be time-sorted. Plus, they
don’t expose any data about the system where they were generated, which is the case of
UUIDv1. UUIDs can compared like numbers, so that they can be used with BTree-Indexes.

If you know one customer number, you cannot derive any other customer number from
this. No customer number can be guessed. But if a customer always has to provide a 128 bit
number, this can be quite a hassle, unless the whole process is completely automatic, which
it hardly is if you are dealing with consumers.

An example can look like this:

CREATE TABLE article (

short_name varchar(50) NOT NULL UNIQUE,

description text,

retail_price numeric(12,2) NOT NULL CHECK (retail_price > 0),

art_no uuid NOT NULL DEFAULT gen_random_uuid ()

);

psql describes this table as follows:

Table "public.article"

Column | Type | Collation | Nullable | Default

--------------+-----------------------+-----------+----------+-------------------

short_name | character varying(50) | | not null |

description | text | | |

retail_price | numeric(12,2) | | not null |

art_no | uuid | | not null | gen_random_uuid()

Indexes:

"article_short_name_key" UNIQUE CONSTRAINT, btree (short_name)

1 https://en.wikipedia.org/wiki/Uuid

3

https://en.wikipedia.org/wiki/Uuid

Check constraints:

"article_retail_price_check" CHECK (retail_price > 0::numeric)

The function used for generating the UUID may vary depending on the variant you want
to use. Inserting a new row works exactly like before, only the data type of the art_no

column is different.

1.3 Random Numbers
In case of article numbers, there is no concern about privacy, so using numbers in sequence
is no problem. In case of invoices, numbers in sequence (with no gaps) may even be a
necessity due to legal regulations. But in case of customers, you might want numbers a lot
shorter than UUIDs, but not in sequence and therefore not guessable.

So random numbers between 100,000 and 999,999 may be a good idea. But how do you
get random numbers in this range, which are guaranteed to be unique, which is necessary
for using them as primary key?

You could just try to be lucky and take random numbers and hope that no collision will
occur. And if it does, just get another random number until it succeeds. This doesn’t look
like a nice way of doing it, but it will work. The disadvantage is that you might have to
do several tries in a loop within your application, which is complicated and error prone.

Another suggestion is to have a table with all possible numbers, which you can populate
using the function generate_series(), but shuffle the numbers, so that when you pick one,
you get a random one. The delete it if has actually been used, but keep if if the INSERT

fails.
But how to achieve this? First, let’s see how the table with potential customer numbers

is created and populated. The rows have to be inserted in random order, so that a common
table expression is being used here.

1.4 Table With Potential Customer Numbers
-- Table with potential customer numbers

CREATE TABLE cust_no (

num integer

);

-- Populate table with 899,999 numbers in random order

WITH nums AS (SELECT generate_series(100000, 999999))

INSERT INTO cust_no SELECT * FROM nums ORDER BY random();

-- Add a primary key index (don't do it in the CREATE statement)

ALTER TABLE cust_no ADD PRIMARY KEY (num);

Then, the table for customers is created. Yes, we have left out some important columns to
keep it small, but included a simple check for the email address and that the customer is
at least 18 years old, so that there is a chance of a failing INSERT. And it would be nice
to keep record of the timestamp when the row was inserted. We chose to leave the phone

4

number optional, but if it is supplied, it must be an international number with plus sign
and country code.

1.5 Customer Table
-- Table for customers

CREATE TABLE customer (

family_name varchar(50) NOT NULL CHECK (trim(both from family_name) <> ''),

first_name varchar(50) NOT NULL CHECK (trim(both from first_name) <> ''),

email varchar(50) NOT NULL CHECK (email ~ '.@.+\....*') UNIQUE,

birthdate date NOT NULL CHECK (birthdate + interval '18 years' <= current_date),

phoneno varchar(20) CHECK (phoneno ~ '^\+[0-9 -]{9,}$'),

cust_no integer PRIMARY KEY,

entered timestamptz NOT NULL DEFAULT current_timestamp

);

1.6 Extended INSERT Statement
Now for inserting a new customer. The command has to get a number from the table
cust_no to be used for the new customer, but delete it from this table, so that no other
customer can get the same number. The clause FOR UPDATE prevents the deletion by others)
and the clause SKIP LOCKED makes sure that concurrent sessions can also acquire and lock
a number by skipping those already locked by the FOR UPDATE clause. Without using SKIP

LOCKED, concurrent SELECT statements with a FOR UPDATE clause would block until the end
of the transaction holding the lock. This may seem negligible because the INSERT takes so
little time, but the whole thing could be part of some long running transaction, which then
would be harmful.

The new customer number has to be returned to the application for the new customer
to receive his number, which is achieved by using the RETURNING clause appended to the
INSERT statement.

So, three commands have to be combined into one: SELECT, DELETE and INSERT. Since
PostgreSQL allows using all of these in Common Table Expressions and the INSERT to
return generated values, the following construction is feasible.

WITH cno AS (

SELECT num FROM cust_no LIMIT 1 FOR UPDATE SKIP LOCKED

), del AS (

DELETE FROM cust_no WHERE num = (select num from cno)

)

INSERT INTO customer VALUES (

'Meier', 'Franz', 'franz@meier.com',

'1984-03-12', NULL,

(SELECT num FROM cno))

RETURNING cust_no;

5

Getting exactly one row from the table cust_no produces a random number. This row gets
deleted in the second common table expression and is used in the main query, which is
an INSERT with a RETURNING clause. A simple test has shown that the INSERT takes about
1 ms to execute, because getting a single row without specifying which one is always fast,
as is the deletion of a row with the primary key in the WHERE clause. The INSERT statement
itself is the same as if there hadn’t used this method for generating the customer number.

This is the query plan of the operation:
QUERY PLAN

--

Insert on customer (cost=8.51..8.52 rows=1 width=428) (actual time=0.823..0.827 rows=1 loops=1)

CTE cno

-> Limit (cost=0.00..0.02 rows=1 width=10) (actual time=0.048..0.050 rows=1 loops=1)

-> LockRows (cost=0.00..21982.98 rows=899999 width=10) (actual time=0.046..0.047 rows=1 loops=1)

-> Seq Scan on cust_no (cost=0.00..12982.99 rows=899999 width=10) (actual time=0.021..0.022 rows=1 loops=1)

CTE del

-> Delete on cust_no cust_no_1 (cost=0.45..8.46 rows=0 width=0) (actual time=0.053..0.053 rows=0 loops=1)

InitPlan 2

-> CTE Scan on cno (cost=0.00..0.02 rows=1 width=4) (actual time=0.002..0.003 rows=1 loops=1)

-> Index Scan using cust_no_pkey on cust_no cust_no_1 (cost=0.42..8.44 rows=1 width=6) (actual time=0.042..0.043 rows=1 loops=1)

Index Cond: (num = (InitPlan 2).col1)

InitPlan 4

-> CTE Scan on cno cno_1 (cost=0.00..0.02 rows=1 width=4) (actual time=0.056..0.058 rows=1 loops=1)

-> Result (cost=0.00..0.01 rows=1 width=428) (actual time=0.066..0.066 rows=1 loops=1)

Planning Time: 0.296 ms

Execution Time: 0.970 ms

Of course the numbers in the table cust_no could as well be alphanumeric instead of purely
consisting of numbers. Sometimes, a mixture of letters and digits is easier for humans to
remember. Also spaces and/or hyphens are possible.

The point of using this long statement for inserting a new row saves several round trips
to the database, which otherwise would cause some lag due to the latency of the round
trip and also cause more load on the server. The implicit transaction introduced by the
statement in autocommit mode is easier to handle than an explicit one.

1.7 Implementation For Non-PostgreSQL Databases
The alternative implementation without using the special capabilities of PostgreSQL would
be like the following.

START TRANSACTION;

-- Retrieve the result of this statement into the variable num of the application.

SELECT num FROM cust_no LIMIT 1 FOR UPDATE SKIP LOCKED;

-- Using the num value for $1, syntax may vary depending on your programming language

DELETE FROM cust_no WHERE num = $1 using num;

-- Using the num value for $1

INSERT INTO customer VALUES (

'Meier', 'Franz', 'franz@meier.com',

'1984-03-12', NULL,

$1) using num;

6

COMMIT TRANSACTION;

This would mean 5 round trips to the database server.

2 Generating an Initial Password
Providing an initial password or PIN number for the new customer, while saving a hash of
it into the table would also be a nice feature. Additionally, some alterations of the values
provided can be helpful. Names and E-Mail addresses have no leading or trailing blanks,
so in case someone has keyed in those be incident, they should be removed before saving
the data.

All of this can be achied by using a function (or a procedure, for that matter) to insert
the new customer and returning the customer number and the initial password, which later
has to be changed on the first login, which is not part of this document.

2.1 Customer Table
First, we create a new table for the customers with an additional column for saving the
hash of the PIN.

-- Table for customers with additional column pass_hash

CREATE TABLE customer (

family_name varchar(50) NOT NULL CHECK (trim(both from family_name) <> ''),

first_name varchar(50) NOT NULL CHECK (trim(both from first_name) <> ''),

email varchar(50) NOT NULL CHECK (email ~ '.@.+\....*') UNIQUE,

birthdate date NOT NULL CHECK (birthdate + interval '18 years' <= current_date),

phoneno varchar(20) CHECK (phoneno ~ '^\+[0-9 -]{9,}$'),

pass_hash char(66) NOT NULL,

cust_no integer PRIMARY KEY,

entered timestamptz NOT NULL DEFAULT current_timestamp

);

2.2 Function to Insert a New Customer
Now for the function taking 5 arguments and returning two values: the customer number
and the PIN in clear text. The sha256 hash of the latter is saved with the customer data.
For simplicity’s sake, the initial password is the letter „P“ followed by a 6-digit number.
The leading „P“ makes sure the customer doesn’t mix up the customer number and the
PIN.

CREATE OR REPLACE FUNCTION new_customer (

family_name varchar, first_name varchar, email varchar,

birthdate date, phoneno varchar,

7

out _cust_no integer, out pin_number char(7)) AS

$$

BEGIN

pin_number = 'P' || trim(to_char(random()*900_000 + 100_000, '999999'));

WITH cno AS (

SELECT num FROM cust_no LIMIT 1 FOR UPDATE SKIP LOCKED

), del AS (

DELETE FROM cust_no WHERE num = (select num from cno)

)

INSERT INTO customer VALUES (

trim(family_name), trim(first_name), trim(email),

birthdate, trim(phoneno),

sha256(pin_number::text::bytea),

(SELECT num FROM cno))

RETURNING cust_no INTO _cust_no;

RETURN;

END;

$$ LANGUAGE plpgsql;

The method shown here can also be used to create consecutive numbers for invoices, where
a sequence doesn’t work well, because it doesn’t avoid gaps. Just leave out the ORDER BY

random() when populating the table with the numbers, so that they will be retrieved in
natural order.

2.3 Using the Function To Insert a New Customer
postgres# select * from new_customer('Meier','Franzi',

'franzi@meier.com', '1999-04-11', null);

_cust_no | pin_number

----------+------------

872871 | P498402

The record coming back has two columns bearing the names of the OUT arguments of the
function. The leading underbar of _cust_no is necessary to avoid ambiguity between the
argument and the column name.

Save_Roundtrips_With_PostgreSQL.tex 29e79bc804 2025-09-17, managed by FOSSIL version control http://fossil-scm.org

8

http://fossil-scm.org

	1 Identifying Numbers
	1.1 Sequences
	1.2 Universally Unique Identifiers
	1.3 Random Numbers
	1.4 Table With Potential Customer Numbers
	1.5 Customer Table
	1.6 Extended INSERT Statement
	1.7 Implementation For Non-PostgreSQL Databases

	2 Generating an Initial Password
	2.1 Customer Table
	2.2 Function to Insert a New Customer
	2.3 Using the Function To Insert a New Customer

